Writing on superhydrophobic nanopost arrays: topographic design for bottom-up assembly.
نویسندگان
چکیده
A well-known property of superhydrophobic surfaces, such as an array of hydrophobic nanoposts, is to allow only limited surface contact of a liquid to the tips of the nanoposts. Herein we demonstrate that material deposition from solution, whether solid precipitation, surface adsorption or colloidal adhesion in static system, or dynamic "writing", can be limited to these specific areas of the surface when in this nonwetting state. As an example of solid precipitation, we show that nucleation of CaCO(3) results in the growth of small, uniform, amorphous deposits (which can merge and recrystallize) instead of disordered, large crystals due to the abundance of identical, small heterogeneous nucleation sites. The growth of amorphous CaCO(3) can be used to trap molecules from solution, as a potential application for controlled drug release. To demonstrate the localized surface adsorption, we show that chemical functionalization of the post tips can make them "sticky" for specific attachment of species (such as colloidal particles) from solution. The electrostatic charge and relative size ratio of the particle/post diameters control the attachment of particles to the post tips with great specificity. Dynamic conditions have also been shown for writing using droplets translated across the nonwetting surface at controlled speeds during deposition. These methods offer unprecedented control over the heterogeneous nucleation and localized growth of crystals from solution and avoid nonspecific adsorption. There is selective control of colloidal or molecular attachment to the nanopost tips, whereby the contact area, time of contact, and tip surface chemistry for reaction are all independently tunable parameters.
منابع مشابه
Template directed assembly of dynamic micellar nanoparticles
The ability to pattern functional nanoparticle arrays in multiple dimensions will enable future devices which exhibit functions that cannot be realized using unstructured nanoparticle arrays. Here we demonstrate the unique assembly properties of dynamic micellar nanoparticles by combining a top down lithographic nanopatterning technique with a solution-based bottom up self-assembly. The templat...
متن کاملDiamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کاملSuperhydrophobic perpendicular nanopin film by the bottom-up process.
We first fabricated the superhydrophobic film with a water contact angle of 178 degrees based on a perpendicular nanopin fractal structure by a bottom-up process. Until now, only materials with an original water contact angle larger than 90 degrees , which is classified as hydrophobicity, could be used to fabricate the superhydrophobic film (>170 degrees ) according to the possible fractal stru...
متن کاملImproving the natural convective heat transfer of a rectangular heatsink using superhydrophobic walls: A numerical approach
The effect of utilizing superhydrophobic walls on improving the convective heat transfer in a rectangular heatsink has been studied numerically in this paper. The vertical walls were kept at isothermal hot-and-cold temperatures and horizontal walls were insulated. The boundary condition on the walls was: no-slip for regular, and slip (with slip length of 500 µm) for superhydrophobic walls. By c...
متن کاملSuperhydrophobic surfaces by anomalous fluoroalkylsilane self-assembly on silica nanosphere arrays.
We present the self-assembled formation of nanosized PFDTS (1H,1H,2H,2H-perfluorodecyltrichlorosilane) features on multilayered silica sphere arrays. We reveal the importance of residual water within the microsphere multilayers during PFDTS deposition and discuss a possible mechanism for the formation of the siloxane nanostructures. The multiscaled roughness induced by these superstructures is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 12 9 شماره
صفحات -
تاریخ انتشار 2012